Assessing The Toxicity of Cotton Production

Zara Niederman Research Associate

Lawton Lanier Nalley Assistant Professor of Agricultural Economics

Marty Matlock Professor of Agricultural and Ecological Engineering

February 23, 2010

Center for Agricultural and Rural Sustainability

University of Arkansas • Division of Agriculture

Research Questions

- 1. How do we assess toxicity?
 - What Impact Methods
 - What Impact Categories
 - How do the Impact Methods Compare
- 2. How do different production practices compare?
 - By Seed Technology
 - By Irrigation
 - By Tillage
- 3. Future Analyses?
 - Risk by Population Exposure

Toxicity Method Requirements

- Looking for broad overview analysis
- Numerical index values for each pesticide
- Not capable of including parameters
 - (e.g. soil type; temperature and precipitation factors; application methods and timing)
- Do not include exposure analysis
 - (e.g. proximity to humans, or existing water quality)

Assessing Toxicity

- Impact Methods:
 - Impact 2002+
 - CML 2001
 - ReCiPe
 - TRACI
 - EIQ

- Impact Categories:
 - Human Toxicity
 - Carcinogen/Non-carcinogen
 - Applicator/Picker/Consumer
 - Ecological Toxicity
 - Terrestrial
 - Marine: Aquatic/Sediment
 - Freshwater: Aquatic/Sediment
 - Birds/Beneficials

Impact Methods and Metrics

EIQ	(41 out of 47 pesticides)	Impact 2002+ (40)	ReCiPe (38)	CML (17)	TRACI (16)
		Human Toxicity			
Farmworker Applicator Picker Consumer Direct user of product Indirect consumer through drinking water No Units		Carcinogens Non-carcinogens <i>kg C2H3Cl eq / DALY</i> Ecological Toxicity	Human Toxicity <i>kg 1,4-DB eq / DALY</i>	Human Toxicity <i>kg 1,4-DB eq</i>	Carcinogens Non-Carcinogens <i>kg benzen/ toluen eq</i>
Terre Bir Ber Ber Aqua Fis <i>No U</i>	estrial ds es neficials atic h <i>Init</i> s	Aquatic Terrestrial <i>kg TEG eq/ PDF*m</i> 2*yr	Freshwater Marine Terrestrial <i>kg 1,4-DB eq / species.yr</i>	Freshwater Aquatic Marine Aquatic FreshwaterSediment Marine Sediment Terrestrial <i>kg 1,4-DB eq</i>	Ecotoxicity kg 2,4-D eq

EIQ Method

ReCiPe and Impact 2002+ Methods

ReCiPe and Impact 2002+ Methods

EIQ Methods

AR_i =application rate of pesticide i SS_i = Single Score for pesticide i

Normalization and Weighting

- ReCiPe and Impact 2002+ normalize the impacts of each impact category based upon national averages
- ReCiPe then weights these categories based upon a philosophical method
- Impact 2002+ and EIQ have equal weighting across categories

Human Toxicity

DALY Normalized Points

1.0E-05

7.4E-08

Carcinogens

Analyzing 1 ha 'Arkansas Cotton furrow 12 Row RR Flex'; Method: IMPACT 2002+ V2.05 / IMPACT 2002+ / weighting

Toxicity: ReCiPe Endpoint (H)

Human Toxicity

DALY Normalized Points Human Toxicity 5.6E-06

species.yr Normalized Points

4.2F-04

Ecological Toxicity

Comparing Single Score Values for Individual Pesticides by Toxicity Method

Comparing Single Score Values for **Production Practices** by Toxicity Method

Toxicity by Production Categories

Tillage:

- Low and No Till appear to have lower toxicity than Conventional Till
- Irrigation:
 - Dryland appears to have slightly lower toxicity than Irrigated
- Seed:
 - Currently broken down my too many categories to show meaningful results
 - Need to figure out if there is a better way to categorize

Potential Future Directions:

Compare each Production Practice and minimize that category of impact that matters most

Comparing processes; Method: IMPACT 2002+ V2.05 / IMPACT 2002+ / single score

Production and Population: Risk Levels

Conclusions

- Impact Methods:
 - ReCiPe, Impact2002+ and EIQ are most thorough
 - Methods are somewhat but not fully consistent
 - Pesticides rankings are fairly different
 - Production practice rankings are more consistent
 - Selection of Method Matters -
 - Must take into account the missing elements
 - Weighting and Normalization methodology is key to how pesticides are analyzed
 - Selection of the method depends upon needs of analyst
 - Ease of Use
 - Specific pesticides of interest
 - Weighting methodology
 - Comparisons required
- Production Practice Comparisons:
 - Low- and No-Till appear to have lower toxicity
 - Dryland appears to have somewhat less toxicity than irrigated