US Cotton Carbon Life Cycle Assessment: Cotton Production Practices in 16 States

Lanier Nalley, PhD Marty Matlock, PhD, CSE Zara Niederman

With funding from:

Life Cycle Assessment: Quantifies Processes

Goal: Quantify inputs and outputs for a system in terms of a standardized unit of measure.

The scope and structure of the LCA are directly dependent upon the unit of measure (functional unit):

- 1. Energy embodied in a single product;
- 2. Greenhouse gas produced per unit product;
- 3. Volume of water consumed per mass of product...

Goal and Scope of LCA must be formulated at the outset of the project, and the **functional unit must be defined**.

LCA Process is described in ISO 14040 and 14044 Standards.

Life Cycle Inventory (LCI) For a Given Production Practice

DIVISION OF AGRICULTURE

Cotton LCA: Analysis

Life Cycle Assessment: Reconciling Functional Units

LCA: Emission Factors

Input	Carbon-equivalent	Source	
Fuel			
Diesel	6.05 lbs C/gal	US EPA	
Gasoline	5.29 lbs C/gal	US EPA	
Fertilizer			
Nitrogen	1.30 lbs C/lb	Lal, R. 2004	
Nitrogen N ₂ O*	2.00 lbs C/lb	IPNI 2007, IPCC	
Phosphate	0.20 lbs C/lb	Lal, R. 2004	
Potash	0.16 lbs C/lb	Lal, R. 2004	
Lime	0.17 lbs C/lb	Lal, R. 2004	
Herbicide	6.44 lbs C/lb	Lal, R. 2004	
Insecticide	5.44 lbs C/lb	Lal, R. 2004	
Defoliant	6.44 lbs C/lb	Using Herbicide Value	
Growth Regulator	5.44 lbs C/lb	Using Insecticide Va'···	J.f.▲
Fungicide	5.44 lbs C/lb	Lal, R. 2004 UNIVERS	SITY OF ARKANSAS

DIVISION OF AGRICULTURE

Carbon Emission By Production Practice

DIVISION OF AGRICULTURE

Carbon Per Pound Cotton

Based on 2000-2007 Avg Yield

Monte Carlo Simulation

Carbon Emissions (bs Ce/lb Cotton)

Life Cycle Assessment Case Study: US Cotton Over Time

Cotton Efficiency Indicators (Per Unit of Output, Index 2000 = 1)

(Values are expressed as 5-year centered averages.)

Source: Keystone Center, Keystone CO

